Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833072

RESUMO

The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Sarcoma , Humanos , Camundongos , Animais , Coenzima A/farmacologia , Ácido Pantotênico/farmacologia , Sarcoma/tratamento farmacológico , Microambiente Tumoral
3.
Trends Neurosci ; 46(8): 640-653, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277277

RESUMO

The nervous and immune systems have classically been studied as separate entities, but there is now mounting evidence for bidirectional communication between them in various organs, including the skin. The skin is an epithelial tissue with important sensory and immune functions. The skin is highly innervated with specialized subclasses of primary sensory neurons (PSNs) that can be in contact with skin-resident innate and adaptive immune cells. Neuroimmune crosstalk in the skin, through interactions of PSNs with the immune system, has been shown to regulate host cutaneous defense, inflammation, and tissue repair. Here, we review current knowledge about the cellular and molecular mechanisms involved in this crosstalk, as depicted via mouse model studies. We highlight the ways in which different immune challenges engage specialized subsets of PSNs to produce mediators acting on immune cell subsets and modulating their function.


Assuntos
Imunidade Inata , Pele , Camundongos , Animais , Células Receptoras Sensoriais , Sistema Imunitário , Inflamação , Imunidade Adaptativa
4.
Curr Opin Immunol ; 77: 102212, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644113

RESUMO

With its unique structure and large numbers of immune cells, the skin is one of the body's first lines of defense against attacks from the environment. It is also innervated by a dense meshwork of primary sensory neurons, including nociceptive fibers specializing in the detection and transduction of harmful stimuli that can elicit pain. This tissue is, therefore, a key organ for studies of neuroimmune interactions and their impact on the host response to environmental challenges. Neuroimmune crosstalk in the skin is crucial for the regulation of inflammation, tissue repair, and host defense against pathogens. A better understanding of this regulation would facilitate the identification of new molecular targets for the treatment of skin diseases.


Assuntos
Células Receptoras Sensoriais , Pele , Humanos , Inflamação , Neuroimunomodulação/fisiologia , Dor , Células Receptoras Sensoriais/fisiologia
5.
Cancer Discov ; 12(4): 1128-1151, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930787

RESUMO

Gut dysbiosis has been associated with intestinal and extraintestinal malignancies, but whether and how carcinogenesis drives compositional shifts of the microbiome to its own benefit remains an open conundrum. Here, we show that malignant processes can cause ileal mucosa atrophy, with villous microvascular constriction associated with dominance of sympathetic over cholinergic signaling. The rapid onset of tumorigenesis induced a burst of REG3γ release by ileal cells, and transient epithelial barrier permeability that culminated in overt and long-lasting dysbiosis dominated by Gram-positive Clostridium species. Pharmacologic blockade of ß-adrenergic receptors or genetic deficiency in Adrb2 gene, vancomycin, or cohousing of tumor bearers with tumor-free littermates prevented cancer-induced ileopathy, eventually slowing tumor growth kinetics. Patients with cancer harbor distinct hallmarks of this stress ileopathy dominated by Clostridium species. Hence, stress ileopathy is a corollary disease of extraintestinal malignancies requiring specific therapies. SIGNIFICANCE: Whether gut dysbiosis promotes tumorigenesis and how it controls tumor progression remain open questions. We show that 50% of transplantable extraintestinal malignancies triggered a ß-adrenergic receptor-dependent ileal mucosa atrophy, associated with increased gut permeability, sustained Clostridium spp.-related dysbiosis, and cancer growth. Vancomycin or propranolol prevented cancer-associated stress ileopathy. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Disbiose , Receptores Adrenérgicos beta , Carcinogênese/patologia , Disbiose/induzido quimicamente , Disbiose/complicações , Disbiose/patologia , Humanos , Mucosa Intestinal/patologia , Transdução de Sinais
6.
Cell Rep ; 37(4): 109884, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706225

RESUMO

Pain, whether acute or persistent, is a serious medical problem worldwide. However, its management remains unsatisfactory, and new analgesic molecules are required. We show here that TAFA4 reverses inflammatory, postoperative, and spared nerve injury (SNI)-induced mechanical hypersensitivity in male and female mice. TAFA4 requires functional low-density lipoprotein receptor-related proteins (LRPs) because their inhibition by RAP (receptor-associated protein) dose-dependently abolishes its antihypersensitive actions. SNI selectively decreases A-type K+ current (IA) in spinal lamina II outer excitatory interneurons (L-IIo ExINs) and induces a concomitant increase in IA and decrease in hyperpolarization-activated current (Ih) in lamina II inner inhibitory interneurons (L-IIi InhINs). Remarkably, SNI-induced ion current alterations in both IN subtypes were rescued by TAFA4 in an LRP-dependent manner. We provide insights into the mechanism by which TAFA4 reverses injury-induced mechanical hypersensitivity by restoring normal spinal neuron activity and highlight the considerable potential of TAFA4 as a treatment for injury-induced mechanical pain.


Assuntos
Citocinas/metabolismo , Hiperalgesia/metabolismo , Dor/metabolismo , Potássio/metabolismo , Receptores de LDL/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Camundongos , Células RAW 264.7
7.
Cancers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071607

RESUMO

Background: NK cell-based immunotherapy to prevent relapse after allogeneic transplantation is an appealing strategy because NK cells can provide strong antitumor effect without inducing graft-versus-host disease (GVHD). Thus, we designed a phase-I clinical trial evaluating the safety of a prophylactic donor-derived ex vivo IL-2 activated NK cell (IL-2 NK) infusion after allo-HSCT for patients with hematologic malignancies. Methods: Donor NK cells were purified and cultured ex vivo with IL-2 before infusion, at three dose levels. To identify the maximum tolerated dose was the main objective. In addition, we performed phenotypical and functional characterization of the NK cell therapy product, and longitudinal immune monitoring of NK cell phenotype in patients. Results: Compared to unstimulated NK cells, IL-2 NK cells expressed higher levels of activating receptors and exhibited increased degranulation and cytokine production in vitro. We treated 16 patients without observing any dose-limiting toxicity. At the last follow up, 11 out of 16 treated patients were alive in complete remission of hematologic malignancies without GVHD features and immunosuppressive treatment. Conclusions: Prophylactic donor-derived IL-2 NK cells after allo-HSCT is safe with low incidence of GVHD. Promising survivals and IL-2 NK cell activated phenotype may support a potential clinical efficacy of this strategy.

8.
Nature ; 594(7861): 94-99, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012116

RESUMO

Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.


Assuntos
Citocinas/metabolismo , Macrófagos/metabolismo , Regeneração , Células Receptoras Sensoriais/metabolismo , Cicatrização , Animais , Sobrevivência Celular , Citocinas/deficiência , Modelos Animais de Doenças , Feminino , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Fibrose/prevenção & controle , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Interleucina-10/biossíntese , Interleucina-10/metabolismo , Macrófagos/efeitos da radiação , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/efeitos da radiação , Pele/patologia , Pele/efeitos da radiação , Queimadura Solar/complicações , Queimadura Solar/etiologia , Queimadura Solar/metabolismo , Queimadura Solar/patologia , Raios Ultravioleta/efeitos adversos
9.
Nat Commun ; 12(1): 2936, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006861

RESUMO

Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav1.8+ sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav1.8-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav1.8+ sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Dor Nociceptiva/imunologia , Células Receptoras Sensoriais/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/imunologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Infiltração de Neutrófilos/imunologia , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Pele/imunologia , Pele/metabolismo , Pele/virologia
10.
J Allergy Clin Immunol ; 147(1): 349-360, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417134

RESUMO

BACKGROUND: Programmed cell death protein 1 (PD-1)-immune checkpoint blockade has provided significant clinical efficacy across various types of cancer by unleashing both T and natural killer (NK) cell-mediated antitumor responses. However, resistance to immunotherapy occurs for many patients, rendering the identification of the mechanisms that control PD-1 expression extremely important to increase the response to the therapy. OBJECTIVE: We sought to identify the stimuli and the molecular mechanisms that induce the de novo PD-1 expression on human NK cells in the tumor setting. METHODS: NK cells freshly isolated from peripheral blood of healthy donors were stimulated with different combinations of molecules, and PD-1 expression was studied at the mRNA and protein levels. Moreover, ex vivo analysis of tumor microenvironment and NK cell phenotype was performed. RESULTS: Glucocorticoids are indispensable for PD-1 induction on human NK cells, in cooperation with a combination of cytokines that are abundant at the tumor site. Mechanistically, glucocorticoids together with IL-12, IL-15, and IL-18 not only upregulate PDCD1 transcription, but also activate a previously unrecognized transcriptional program leading to enhanced mRNA translation and resulting in an increased PD-1 amount in NK cells. CONCLUSIONS: These results provide evidence of a novel immune suppressive mechanism of glucocorticoids involving the transcriptional and translational control of an important immune checkpoint.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Glucocorticoides/imunologia , Interleucina-15/imunologia , Interleucina-18/imunologia , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologia , Células A549 , Humanos , Células K562
11.
Cell Mol Immunol ; 18(2): 269-278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32868909

RESUMO

Glucocorticoids (GCs) are endogenous hormones that are crucial for the homeostasis of the organism and adaptation to the external environment. Because of their anti-inflammatory effects, synthetic GCs are also extensively used in clinical practice. However, almost all cells in the body are sensitive to GC regulation. As a result, these mediators have pleiotropic effects, which may be undesirable or detrimental to human health. Here, we summarize the recent findings that contribute to deciphering the molecular mechanisms downstream of glucocorticoid receptor activation. We also discuss the complex role of GCs in infectious diseases such as sepsis and COVID-19, in which the balance between pathogen elimination and protection against excessive inflammation and immunopathology needs to be tightly regulated. An understanding of the cell type- and context-specific actions of GCs from the molecular to the organismal level would help to optimize their therapeutic use.


Assuntos
Glucocorticoides/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Animais , COVID-19/metabolismo , Humanos , Inflamação/patologia , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Cell Rep ; 32(1): 107855, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640221

RESUMO

The liver harbors two main innate lymphoid cell (ILC) populations: conventional NK (cNK) cells and tissue-resident NK (trNK) cells. Using the MCMV model of infection, we find that, in contrast to liver cNK cells, trNK cells initially undergo a contraction phase followed by a recovery phase to homeostatic levels. The contraction is MCMV independent because a similar phenotype is observed following poly(I:C)/CpG or α-GalCer injection. The rapid contraction phase is due to apoptosis, whereas the recovery phase occurs via proliferation in situ. Interestingly, trNK cell apoptosis is not mediated by fratricide and not induced by liver lymphocytes or inflammatory cytokines. Instead, we find that trNK cell apoptosis is the consequence of an increased sensitivity to lactic acid. Mechanistic analysis indicates that trNK cell sensitivity to lactate is linked to impaired mitochondrial function. These findings underscore the distinctive properties of the liver-resident NK cell compartment.


Assuntos
Inflamação/patologia , Células Matadoras Naturais/patologia , Lactatos/metabolismo , Fígado/patologia , Animais , Apoptose , Proliferação de Células , Microambiente Celular , Citocinas/metabolismo , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Cinética , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Transdução de Sinais
14.
Cell ; 180(6): 1280-1280.e1, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200803

RESUMO

NK cells are broadly distributed innate lymphoid cells (ILCs) encompassing distinct populations based on CD11b and CD27 expression in mice or CD56 intensity in humans. Involved in anti-viral and anti-tumor immunity thanks to their cytokines and chemokines secretion as well as their cytotoxic capabilities, NK cells have emerged as a promising therapeutic target in several solid tumors and hematological malignancies. To view this Snapshot, open or download the PDF.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/fisiologia , Animais , Citocinas/metabolismo , Humanos , Imunidade Inata , Imunoterapia Ativa/métodos , Camundongos , Neoplasias/imunologia
15.
Methods Mol Biol ; 2121: 83-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32147788

RESUMO

Neuroendocrine hormones are recognized as important mediators of inflammation that participate in the regulation of the magnitude and length of the immune response. It was demonstrated that endogenous glucocorticoids control the function of innate lymphoid cells (ILCs), and this regulatory mechanism is both cell type- and tissue-specific and is required for host protection during infections. We describe here how to analyze in vitro the effects of corticosterone on murine ILCs, using flow cytometry. The protocols described allow for the identification of the specific combination of stimuli with which glucocorticoids cooperate to regulate the function of ILCs. These methods are instrumental to understanding the molecular mechanisms downstream of glucocorticoid receptor activation and can explain the tissue specificity of ILC response to glucocorticoids.


Assuntos
Corticosterona/farmacologia , Citometria de Fluxo/métodos , Imunidade Inata , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Baço/citologia , Animais , Citocinas/farmacologia , Interferon gama/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia
16.
J Exp Med ; 217(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32045472

RESUMO

In humans, psychological stress has been associated with a higher risk of infectious illness. However, the mechanisms by which the stress pathway interferes with host response to pathogens remain unclear. We demonstrate here a role for the ß2-adrenergic receptor (ß2-AR), which binds the stress mediators adrenaline and noradrenaline, in modulating host response to mouse cytomegalovirus (MCMV) infection. Mice treated with a ß2-AR agonist were more susceptible to MCMV infection. By contrast, ß2-AR deficiency resulted in a better clearance of the virus, less tissue damage, and greater resistance to MCMV. Mechanistically, we found a correlation between higher levels of IFN-γ production by liver natural killer (NK) cells and stronger resistance to MCMV. However, the control of NK cell IFN-γ production was not cell intrinsic, revealing a cell-extrinsic downregulation of the antiviral NK cell response by adrenergic neuroendocrine signals. This pathway reduces host immune defense, suggesting that the blockade of the ß2-AR signaling could be used to increase resistance to infectious diseases.


Assuntos
Infecções por Citomegalovirus/imunologia , Regulação para Baixo/imunologia , Imunidade Inata/imunologia , Receptores Adrenérgicos beta 2/imunologia , Transdução de Sinais/imunologia , Animais , Epinefrina/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/imunologia , Norepinefrina/imunologia
17.
Cell ; 176(4): 716-728.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30712871

RESUMO

Sensory axons degenerate following separation from their cell body, but partial injury to peripheral nerves may leave the integrity of damaged axons preserved. We show that an endogenous ligand for the natural killer (NK) cell receptor NKG2D, Retinoic Acid Early 1 (RAE1), is re-expressed in adult dorsal root ganglion neurons following peripheral nerve injury, triggering selective degeneration of injured axons. Infiltration of cytotoxic NK cells into the sciatic nerve by extravasation occurs within 3 days following crush injury. Using a combination of genetic cell ablation and cytokine-antibody complex stimulation, we show that NK cell function correlates with loss of sensation due to degeneration of injured afferents and reduced incidence of post-injury hypersensitivity. This neuro-immune mechanism of selective NK cell-mediated degeneration of damaged but intact sensory axons complements Wallerian degeneration and suggests the therapeutic potential of modulating NK cell function to resolve painful neuropathy through the clearance of partially damaged nerves.


Assuntos
Células Matadoras Naturais/fisiologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Axônios , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Regeneração Nervosa , Neurônios/citologia , Neurônios Aferentes/imunologia , Neurônios Aferentes/metabolismo , Proteínas Associadas à Matriz Nuclear/fisiologia , Proteínas de Transporte Nucleocitoplasmático/fisiologia , Dor , Traumatismos dos Nervos Periféricos/imunologia , Doenças do Sistema Nervoso Periférico , Nervo Isquiático , Células Receptoras Sensoriais/metabolismo
18.
Immunity ; 49(5): 971-986.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30413361

RESUMO

Natural killer (NK) cells are innate lymphoid cells (ILCs) involved in antimicrobial and antitumoral responses. Several NK cell subsets have been reported in humans and mice, but their heterogeneity across organs and species remains poorly characterized. We assessed the diversity of human and mouse NK cells by single-cell RNA sequencing on thousands of individual cells isolated from spleen and blood. Unbiased transcriptional clustering revealed two distinct signatures differentiating between splenic and blood NK cells. This analysis at single-cell resolution identified three subpopulations in mouse spleen and four in human spleen, and two subsets each in mouse and human blood. A comparison of transcriptomic profiles within and between species highlighted the similarity of the two major subsets, NK1 and NK2, across organs and species. This unbiased approach provides insight into the biology of NK cells and establishes a rationale for the translation of mouse studies to human physiology and disease.


Assuntos
Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/metabolismo , Transcriptoma , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata , Imunofenotipagem , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Camundongos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Fenótipo , Análise de Célula Única
19.
Immunol Rev ; 286(1): 120-136, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30294960

RESUMO

The activities of the immune system in repairing tissue injury and combating pathogens were long thought to be independent of the nervous system. However, a major regulatory role of immunomodulatory molecules released locally or systemically by the neuroendocrine system has recently emerged. A number of observations and discoveries support indeed the notion of the nervous system as an immunoregulatory system involved in immune responses. Innate lymphoid cells (ILCs), including natural killer (NK) cells and tissue-resident ILCs, form a family of effector cells present in organs and mucosal barriers. ILCs are involved in the maintenance of tissue integrity and homeostasis. They can also secrete effector cytokines rapidly, and this ability enables them to play early roles in the immune response. ILCs are activated by multiple pathways including epithelial and myeloid cell-derived cytokines. Their functions are also regulated by mediators produced by the nervous system. In particular, the peripheral nervous system, through neurotransmitters and neuropeptides, works in parallel with the hypothalamic-pituitary-adrenal and gonadal axis to modulate inflammatory events and maintain homeostasis. We summarize here recent findings concerning the regulation of ILC activities by neuroendocrine mediators in homeostatic and inflammatory conditions.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Neurotransmissores/imunologia , Sistema Hipófise-Suprarrenal/fisiologia , Animais , Homeostase , Humanos , Imunidade Inata , Linfócitos , Neuroimunomodulação , Sistemas Neurossecretores
20.
Oncoimmunology ; 7(10): e1475875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288342

RESUMO

NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function. Significance Innate lymphoid cells (ILCs) play important roles in immune protection. Various subsets of ILCs express the activating receptor NKp46 which is capable of recognizing pathogen derived and tumor ligands and is necessary for immune protection. Here, we describe a spontaneous point mutation in the signal peptide of the NKp46 protein in congenic Ly5.1 mice which are widely used for tracking cells in vivo. This Ncr1 C14R mutation impairs NKp46 surface expression resulting in destabilization of Ncr1 and accumulation of NKp46 in the endoplasmic reticulum. Loss of stable NKp46 expression impaired the maturation of NKp46+ ILCs and altered the expression of TRAIL and T-bet in ILC1 and ILC3, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...